skip to main content


Search for: All records

Creators/Authors contains: "Walpole, Joseph"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Objective

    Define a role for perivascular cells during developmental retinal angiogenesis in the context of EC Notch1‐DLL4 signaling at the multicellular network level.

    Methods

    The retinal vasculature is highly sensitive to growth factor‐mediated intercellular signaling. Although EC signaling has been explored in detail, it remains unclear how PC function to modulate these signals that lead to a diverse set of vascular network patterns in health and disease. We have developed an ABM of retinal angiogenesis that incorporates both ECs and PCs to investigate the formation of vascular network patterns as a function of pericyte coverage. We use our model to test the hypothesis that PC modulate Notch1‐DLL4 signaling in endothelial cell‐endothelial cell interactions.

    Results

    Agent‐based model (ABM) simulations that include PCs more accurately predict experimentally observed vascular network morphologies than simulations that lack PCs, suggesting that PCs may influence sprouting behaviors through physical blockade of endothelial intercellular connections.

    Conclusions

    This study supports a role for PCs as a physical buffer to signal propagation during vascular network formation—a barrier that may be important for generating healthy microvascular network patterns.

     
    more » « less